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Grade estimation based on kriging uses a search ellipsoid centred on each block to select 

samples used for estimation. Traditionally, a globally orientated search ellipsoid is used 

during the estimation process. In folded structures or meandering channels where the 

orientation of grade continuity changes, misalignment of the search ellipsoid by just a few 

degrees can impact the estimation results. The estimation results can be improved if the 

search ellipsoid is aligned alongside the direction and continuity of the mineralisation. The 

use of the Dynamic Anisotropy option during the estimation process allows the anisotropic 

rotation angles defining the search ellipsoid to locally honour the trend of the mineralisation 

within each cell of the block model. This paper describes the application of Dynamic 

Anisotropy to a slightly undulating area which lies on a gently folded limb of a syncline at 

Driefontein gold mine in South Africa. Estimates calculated using Dynamic Anisotropy and 

the traditional method (Ordinary Kriging) were compared on a real-life dataset. The results 

of the study showed that generally, the application of the Dynamic Anisotropy interpolation 

technique during the estimation process slightly improves the quality of estimates. By 

comparison with the Dynamic Anisotropy technique, Ordinary Kriging is a better method 

of grade estimation with increasing block size. 
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Introduction 

The results of a grade estimation exercise can be improved if the continuity in undulating, meandering or 

folded geological structures can be matched by aligning the search ellipsoid along the direction and continuity 

of the mineralisation trend in the ore body. The method referred to as Dynamic Anisotropy (DA) 

(CAE Mining), allows the anisotropic rotation angles defining the search ellipsoid and variogram model, to 

locally honour the trend of the mineralisation for each cell within a block model. This paper confirms that the 

application of DA to a slightly undulating, gently folded limb of a syncline in an area of the Driefontein gold 

mine provides a slight improvement to the grade estimation process. In addition, the optimal DA resolution 

providing this improvement in grade estimates is determined. Currently, the mine uses Ordinary Kriging (OK) 

method of estimation on a 30×30 m two-dimensional (2D) block model to calculate their Mineral Resource 

estimates.  

Background 

The South African gold mining industry utilizes geostatistical techniques extensively to provide estimates for 

gold reserves and resources, and to assist with daily mine valuation and mine planning (Krige 2000). 

Geostatistical estimation is used in the mining industry to provide best linear unbiased estimates of metal 

accumulation grades in unmined areas (Armstrong, 1998). The reliability of Mineral Resource estimates 

depends not only on the quality and number of samples, but also on the degree of continuity of the 

mineralisation (Blais and Carlier, 1968). The more continuous the mineralisation, the better will be the 

correlation between the grade of a sample and the unknown true grade of the block represented by this sample. 

In the grade estimation process, grades are interpolated or extrapolated into 2D or three-dimensional (3D) 

block models of a deposit. The process uses a search volume ellipsoid (Figure 1) centred on each block, to 

select samples for use in one of the several interpolation algorithms to estimate the block grade. 

Figure 1: Oriented search ellipsoid (Source: Copyright © Datamine 2016). 

In anisotropic geological settings, the continuity is a function of the mineralised structure or lithology and the 

long axis of the search ellipsoid should be oriented along the most continuous direction of the mineralisation, 

as shown in Figure 3.  
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Figure 2: Search ellipsoid oriented along most continuous direction of mineralisation. 

Misalignment of the search ellipsoid by just a few degrees can affect the estimation results (CAE Mining) e.g. 

a block might be estimated to be below the cut-off grade when it is in fact above the cut-off grade and vice-

versa. The size, shape and orientation of the search ellipsoid are determined from variography analyses 

identifying the major directions of continuity of mineralisation in the deposit (Zabrusky, 2013). Spatial 

variability of a regionalised variable maybe isotropic: if the axes (X, Y and Z) of the ellipsoid are of equal 

length, or anisotropic if the axes are of different lengths in orthogonal directions. The use of an anisotropic 

search window produces a small but consistent improvement in all estimating techniques for all geological 

settings (Isaaks and Srivastava, 1989). 

Grades in gold vein deposits are characterised by a highly positively skewed distribution in which a small 

number of higher grade samples can cause an overestimation in the surrounding low grade estimation block 

areas (Kim et al., 1987; Dominy et al., 1997). These outliers can also cause variogram distortions such as pure 

nugget effect, which in turn affects the grade estimate results (Roy, 2000).  

Variogram parameters are used to create the search volume ellipsoid and during DA estimation, the ellipsoids 

is centred on each block, to select samples used for estimation and is oriented to follow the mineralisation 

trend precisely as shown Figure 3.  
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Figure 3: Ellipsoids oriented to follow mineralisation trend precisely. 

Case Study 

Sibanye currently owns and operates four underground and surface gold operations, namely Driefontein, Kloof 

and Cooke in the West Witwatersrand region and the Beatrix in the southern Free State, as shown in the 

locality map of Figure 2. The Driefontein mine where this research was undertaken lies 70 to 80 km west of 

Johannesburg in South Africa. 

Figure 4: Sibanye location map (Source: https://www.sibanyegold.co.za/operations, 2015). 

Geological Model and Interpretation 

https://www.sibanyegold.co.za/operations
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The varying support of the intersections of mineralised rock in gold deposits with narrow vein- or layer-like 

morphology (Bertoli et al., 2003) means that the variable of interest (i.e. grade) is not a suitable variable for 

direct kriging. Although the width of the reef may vary from a few centimetres to more than two meters on 

any one Witwatersrand-type gold mine, the entire seam is mined and estimation of the grade is therefore 

executed in 2D thus ensuring that bias due to non-additivity of grade is avoided. In the 2D approach, the 

product of the channel width (cm) and gold grade (g/t), known as the accumulation value (cmg/t) is also 

amenable to direct kriging (Chiles and Delfiner, 2012). Hence accumulation is kriged independently of 

channel width and the gold grade is derived by dividing the two estimates by one another. 

Driefontein geological models are based on structural, grade and sedimentological data. Sedimentological, 

gold value and channel width (CW) data are used to delineate the ore body into locally and geologically 

homogeneous zones called geozones. The boundaries of the geozones constrain the 2D geostatistical 

estimation of the Mineral Resources based on surface and underground boreholes and channel samples. 

Statistical Analysis 

Descriptive statistics of the entire dataset are presented in Table 1 and are shown in the histogram and Q-Q 

plots of Figure 5. 

Table 1: Statistics from the sample file 

The mean value for cm.g/t and CW is 2218.85 cm.g/t and 26.07 cm respectively and the coefficient of variation 

(CoV) values are 1.01 and 0.71 for cm.g/t and CW, respectively. These values are within acceptable ranges. 

This indicates that there are not a significant number of extreme values. The samples are closely spaced which 

translates to a massive quantity of values informing the distribution very well 

Figure 5: Histogram and Q-Q plot of accumulation values (cmg/t) 

Field NSamp Min Max Mean Stddev Skewness Kurtosis CoV 
cm.g/t 46 943 0.00 14 250.90 2 218.85 2 250.84 2.00 4.77 1.01 
CW/cm 46 943 1.00 0.62 26.07 18.64 3.62 23.81 0.71 
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As expected, the histogram and Q-Q plot show that the gold grade distribution is leptokurtic and positively 

skewed. The points on the Q-Q plot depart from a straight line and the distribution is skewed to the right. 

Data Declustering 

Sampling programs in ore bodies are not entirely random and more often than not, mineralised rocks are 

unevenly sampled leading to clustering of sample points, particularly in the high grade areas. Preferential 

sampling of spatially auto-correlated data could mean that the histogram of the sample data may not reflect 

the histogram of the population. The declustering method assigns higher weights to the less densely sampled 

points and compensates for redundancy in densely sampled areas. The process adjusts the summary statistics 

to be representative of the entire area of interest thereby removing potential bias (Deutsch and Journel, 1998). 

The dataset used in this study was declustered and normal score transformed using Gaussian anamorphosis 

using hermite polynomials in order to satisfy the assumptions of continuous variability was used.  

Gaussian Anamorphosis 

Gaussian anamorphosis (normal scores) transforms the raw variable, cm.g/t into a Gaussian variable using the 

empirical inversion method. For each raw value, the method calculates the attached empirical frequency and 

the corresponding Gaussian value; this function can be conveniently written as a polynomial expansion: 

𝜑(𝑌) =  ∑ 𝛹𝑖𝐻𝑖

∞

𝑖=0

(𝑌)

where Hi(Y) are called the Hermite Polynomials. In practice, this polynomial expansion is stopped at a given 

order. Using this technique, any function can be expressed in terms of Hermite polynomials (30 polynomials 

were used in this study), (Baafi and Schofield, 1997). Figure 6 shows the anamorphosis model which is 

represented with dotted lines when outside the validity bounds called the practical interval of definition of the 

raw variable. These bounds are the points where the model is no longer smoothly increasing. 
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Figure 6: Anamorphosis plot – cm.g/t 

The absolute interval of definition is represented as two horizontal lines. The solid blue line represents the 

cumulative solution of the hermite polynomials, which informs the Gaussian Anamorphosis, and the black 

line represents the actual data. A histogram and Q-Q plots for the transformed accumulation values are shown 

in Figure 7. 

Figure 7: Gaussian Cm.g/t histogram and Q-Q plots. 

It can be shown from Figure 7 that the histogram plot shows a normal distribution and the Q-Q plot follows 

an almost linear trend thus confirming that a normal scores model is a good approximation for the distribution. 

Calculating Semi-Variogram 
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The omni-directional semi-variogram shown in Figure 6 was modelled using normal scores cmg/t data in 

Geovariances Isatis software, to produce a spherical model of the form: 

𝛾(ℎ) = {
𝑐0 [

3

2

ℎ

𝑎0
−  

1

2
 (

ℎ

𝑎0
)

3

] ,   𝑓𝑜𝑟 ℎ ≤  𝑎0 

𝑐0,        𝑓𝑜𝑟   ℎ > 𝑎0

Figure 8: Omni – directional experimental variogram model for cm.g/t 

The standardised variogram model shown in Figure 8 has a range of 180 m and a very high nugget effect 

(approximately 75 % nugget to sill ratio) which is expected for a gold deposit. However, Ordinary Kriging 

with a very high nugget effect may produce worse estimates than Inverse Distance methods and is most 

successful when anisotropy is properly described and when the semi-variogram is locally customised (Isaaks 

and Srivastava, 1989). The variogram map shown in Figure 9 was constructed to identify directions in which 

the data has the greatest continuity.  

Figure 9: Variogram map plot for normal scores of cm.g/t data 
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The variogram map indicates the greatest continuity occurs along a northwest-southeast direction with an 

orthogonal northeast-southwest direction for the least continuity; N140° and N50° were used in the model 

variogram. Figure 10 shows the variogram models for Gaussian transformed cm.g/t data in the short (N50°, 

left) and long (N140°, right) directions of anisotropy, respectively.   

Figure 10: Variogram models for short (N50, left) and long (N140, right) directions 

The model variogram in Figure 10 was back-transformed from Gaussian cm.g/t into a discretized variogram 

Figure 11 using the already saved anamorphosis function (transformation table) calculated during the 

transformation of the raw cm.g/t into the Gaussian cm.g/t. The raw variable (Y) and the Gaussian variable (Z) 

are linked by the following anamorphosis function phi: 𝑍 = 𝑝ℎ𝑖 (𝑌).  

Figure 11: Back-transformed Cm.g/t experimental and model variogram for short (N50, left) and long 

(N140, right) directions  

The normal scores and back-transformed variograms shown in Figure 10 and Figure 11 are robust, well-

structured and easily modelled. Ranges for the first structures are about 40-50 m and the second structure has 

a range of about 200 m in both variograms indicating long distance grade continuity which is somewhat 

unusual in the type of deposit. However, the second range was not used during the estimation process as was 
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defined in the neighbourhood kriging analysis (explained in the next section). The sills of the variogram model 

in different directions are only marginally different; a feature commonly found in channelised environments.  

The nugget effect is high which indicates that at short distances, the variable exhibits high spatial variation, 

typical of what is expected in a coarse gold deposit. The variogram model also reveals that the data are second 

order stationary, i.e. they come for the same domain and there is no trend in the dataset. 

Quantitative Kriging Neighbourhood Analysis 

The search neighbourhood refers to the number and spatial configuration of points to be used in estimation at 

an unmeasured location. The shape of the search ellipse is dictated by the anisotropy, having its major axis 

parallel to the direction of maximum spatial continuity (Isaaks and Srivastava, 1989). Quantitative Kriging 

Neighbourhood Analysis (QKNA), a method for determining the search neighbourhood (Vann et al., 2003), 

was used to calculate the maximum number of samples used as well as the number of discretization points 

used for each block size (Figure 12). Beyond 55 samples there is no change in SLOR, KE or estimation 

variance (the line graphs flatten).  

Figure 12: QKNA sample number optimisation graph 

Curves for the slope of regression, (SLOR), kriging efficiencies (KE) and estimation variance shown Figure 

12, were determined on 30×30 m blocks using a quadrant search. Ideally, a value of one for the SLOR implies 

conditional unbiasedness, meaning that the true grade for a set of blocks should be approximately equal to the 

grade predicted by the kriged estimation (Vann et al., 2003). For the purpose of this exercise, 8 and 36 were 

chosen as the minimum and maximum number of samples for estimating a 30×30 m block. Increasing the 

number of samples above this will not significantly increase the SLOR or KE but could result in over-

smoothing of the block estimates. 
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Block Discretization Number Optimisation 

A block is regularly discretized according to the number of discretization points along X, Y and Z. The points 

along X, Y and Z axes are randomly and independently moved by off-setting the origin of the discretization 

grid and calculating each discretization several times. A graph of the range of 𝐶̅(𝑉, 𝑉) (covariance) versus 

number of discretizing points is shown in Figure 13.  

Figure 13: Graph showing sensitivity of covariance to block discretization. 

According to Vann et al., (2003) stable results indicate that the discretization is adequate. The curve in Figure 

13 show that the average covariance does not decrease significantly beyond about 7 or 8 discretizing points. 

Dynamic Anisotropy Application on 30×30 m Block 

Using Datamine Studio 3 software, strings (lines) were digitized and used to define the orientation of the 

mineralisation trend shown on Figure 14, which shows the sample location plan colour coded in Au cm.g/t. 

These lines followed the pay channel trend and are shown in Figure 15. The string file was input to the 

ANISOANG process command in Studio 3 to create a “points” file. Figure 15 shows the points as dotted lines 

and each “line” is a locally interpreted “direction”. 
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Figure 14: sample location plan colour coded in Au cm.g/t. 

Figure 15: Orientation of mineralization (showing pay channel trend). 

Using the “ESTIMA” process in Studio 3, the Inverse Power of Distance method of interpolation was used to 

interpolate the mineralisation trend direction data into a 30×30 m block model.  The DA option in Studio 3 
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allows the anisotropy rotation angles for defining the search volume to be defined individually for each 30 x 

30 m cell in the model. The search volume ellipse was oriented precisely and followed the trend of the 

mineralization. Since the estimation process was done in 2D, the dip was set at 0, and only the mineralisation 

trend direction was defined. The cmg/t value was then interpolated into the block model this time using the 

DA angles for the blocks instead of a set search ellipse. During the estimation process, the space around the 

centre of a block being estimated was divided into four quadrants by the axial planes of the data search 

ellipsoid. This parameter ensured that the samples informing an estimate were relatively evenly spread around 

the block.  

Optimal DA Resolution Determination 

In order to determine the optimal DA resolution for grade estimation improvement, the estimation process 

described above was executed on block model range of different resolutions which include; 30×30 m, 

60×60 m, 120×120 m and 240×240 m grids for both estimation techniques, DA and OK. The resulting 

estimates were then compared against each other. 

Results 

Scatter Plots 

The block estimates were validated against the input composite sample “source” data. The sample data was 

regularised where the average value of all samples within a grid cell of 30×30 m in X and Y directions was 

extracted and the mean statistic compared with corresponding block model estimate with similar block IJK 

values. The IJK field in a block model is an index value giving the “location” of the parent cell for each cell 

or subcell.  All subcells in a parent cell have the same IJK value. Scatter plots showing the relationship between 

the block model estimates, and sample data are shown in Figure 16.  

Figure 16: OK estimates (left) and DA estimates (right) vs. sample data scatter plots. 
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The strength and direction of the linear relationship between OK estimates and sample values and DA 

estimates and sample values was determined and the equation for the best-fit lines calculated using the “linear 

regression” function in EXCEL. Regression lines for the graphs in Figure 16 were calculated as follows:  

𝑦 =  0.736𝑥 + 580.85 ………….for sample data vs OK estimates 

𝑦 =  0.737𝑥 + 578.79  …………for sample data vs DA estimates 

Where x is the sample data and y is the estimate. When x=0, y=580.85 for OK estimates and 578.79 for DA 

estimates. However, the intercept is not considered in evaluating the performance of the estimator. The slope 

for both methods of interpolation is positive and is 0.736 and 0.737 for OK and DA estimates, respectively. 

This indicates that the estimates calculated from both methods of interpolation processes are similar, implying 

that when the sample grades increase by a factor of 1, the value of the corresponding estimates increases by a 

factor of 0.74 and a larger constant has to be added ~ 580 cmg/t for both OK and DA estimates. The correlation 

coefficient, R measures the precision, strength and direction of a linear relationship between two quantitative 

variables on a scatterplot. It is observed from Figure 16 that there is a positive and strong linear relationship 

between the sample composites and estimates produced by both interpolation methods; and that the 

relationship between samples and DA estimates is a little stronger with a correlation coefficient value of 0.889 

in comparison to 0.886 for OK estimates. However, the percentage difference between the two estimation 

techniques is quite small, 0.003. Thus indicating that the application of DA estimation technique in 2D over 

the 30×30 m block model slightly improves the quality of estimates however, the improvement is not that not 

significant. 

Discussion 

To determine the optimal resolution that DA would provide an improvement in grade estimates, the results of 

estimation carried out in 60×60 m, 120×120 m and 240×240 m block sizes using DA and OK methods were 

compared. The maximum and minimum number of samples used for each of the different block sizes was 

determined using the QKNA approach suggested by Vann et al., (2003), and the resultant estimates validated. 

The sample composites in each of the different block sizes were regularised and the average value compared 

with the corresponding block estimate.  The slopes and correlation coefficients between the averaged block 

grade and the kriged estimates determined using DA and OK methods for the various block sizes, are listed in 

Table 2. 

Table 2: Line of regression equations and correlation coefficients on blocks. 
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The slope and correlation coefficients for different block sizes using DA and OK estimation methods are 

plotted in Figure 17 and Figure 18 respectively. 

Figure 17: Slope against block size. 

Block Est Method R 2 R Regression equation

30 × 30 DA 0.79 0.889 y = 0.7370x + 578.79

30 × 30 Normal OK 0.785 0.886 y = 0.7358x + 580.85

60 × 60 DA 0.797 0.893 y = 0.8760x + 284.68

60 × 60 Normal OK 0.797 0.893 y = 0.8793x + 280.83

120 × 120 DA 0.615 0.784 y = 0.8734x + 209.99

120 × 120 Normal OK 0.612 0.782 y = 0.8709x + 214.42

240 × 240 DA 0.26 0.51 y = 0.9777x + 65.710

240 × 240 Normal OK 0.295 0.543 y = 1.0138x - 47.016

0.5

0.6

0.7

0.8

0.9

1

1.1

30 60 120 240

Sl
o

p
e

Block Size

Slope vs block size

OK with DA OK



16 

Figure 18: Correlation coefficient against block size. 

The following is deduced from Table 2, Figure 17 and Figure 18: 

i) Application of DA in 2D over the 30×30 m block model (Case Study) slightly improves the quality

of estimates however, the improvement is not that not significant;

ii) Slope increases significantly with increasing block size which implies that increasing the block

size increases the quality of estimates for both interpolation methods, however R decreases with

increasing block size implying that the relationship between the samples and estimates weakens

with increasing block size;

iii) Slope for the 240×240 m grid block is greater than one implying that there is a conditional bias of

the estimates;

iv) There is a small to insignificant difference between the slopes for both methods executed on same

block size. The study was executed in a 2D environment where the dip component of DA has been

ignored. This is a limitation for this exercise and further explains why the results between OK and

DA estimation techniques are very similar. Also, the dense spacing of the data in the blocks

estimated precludes getting very different answers regardless of the technique used; and

v) The traditional estimation technique, which is OK, becomes a better method of estimation with

increasing block size in comparison to the DA method of estimation. This can also be explained

pictorially in Figure 19, which shows that as the block sizes increase, the anisotropy tends toward

the regional anisotropy and the localized directions become misleading. In other words, as the

block sizes approach the level of resolution of DA, the benefits thereof are reduced and as observed
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may even become a confounding factor in estimation leading to less accurate and smoothing of 

estimates.  

Figure 19: Diagrammatic representation showing relationship between block sizes, “resolution of 

Dynamic Anisotropy” and localised directions. 

Conclusions 

Accurately accounting for the continuity in grade in meandering depositional environments that are typical of 

the Witwatersrand type gold deposits using the DA method is considered to provide consistently improved 

estimates than if the direction of anisotropy is not taken into account. Rather than performing domain-based 

analysis with different search ellipses, DA can be applied during the estimation process whereby the search 

volume is oriented to follow the trend of mineralization precisely. A dynamic search ellipse that automatically 

adjusts to the direction of maximum continuity allows for a truer estimation of the grade in geological settings 

characterised by undulating, meandering or folded host rock structures. The DA method identifies the data to 

be used in the estimation on a block by block basis, allowing the direction of the search ellipsoid to change 

along strike according to local variations in the dip and dip direction for each block. Thus, DA improves 

sample selection and kriging efficiency during the estimation of grade.  

This paper confirms that the DA approach provides a slight improved estimation of grade in an area of the 

Driefontein Gold mine lying on a slightly undulating, gently folded limb of a syncline. DA and OK 

interpolation techniques were applied to the data set extracted from the case study area and the resultant 

estimates compared. It was observed that the application of DA estimation technique in 2D over the 30×30 m 

block model slightly improves the quality of estimates however, the improvement is not that not significant. 
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This is attributed to the fact that for smaller block sizes, samples being closer together tend to share weights 

resulting in estimates that are very similar, whereas this is not the case with larger block sizes.  

The optimal block size for improving grade estimates was determined using the estimates for grade following 

a range of block sizes; 30×30 m, 60×60 m, 120×120 m and 240×240 m. Analysis of the slope (gradient) and 

the kriging efficiency indicate that the gradient increased significantly whilst the correlation coefficient, R 

decreased with increasing block size. This implies that increasing the block size improves the quality of 

estimates for both DA and OK, but reduces R, suggesting that the correlation between the sample data and 

block estimates weakens as the block size increases.  This may be due to the fact that there are more samples 

within a block than are used to calculate the estimate. Where a large block contains more samples than are 

used for estimation, using the average is probably a better estimate of grade than can be produced by kriging. 

The results also revealed that with increasing block size, OK is a better estimator of grade compared to DA 

because at these scales, local anisotropy tends toward the regional anisotropy and localized directions become 

misleading.  

A limitation for this study which may explain the similarity between OK and DA estimation techniques is that 

the 2D study only took account of direction of thee mineralisation trend and not the dip; as the dip component 

of DA was not used. A similar exercise based on three dimensional and widely spaced, regularised point data 

and Simple Kriging is planned as a future study at Driefontein Gold Mine. In addition, further investigations 

in an exploration area with low sample data density are intended to test whether the DA method of 

interpolation will improve the quality of estimates. 
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